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Abstract
The solutions of an analogous Schrödinger wave equation for the one-
dimensional non-Hermitian Hamiltonian H(x, p) in the complex phase plane
characterized by x = x1 + ip2, p = p1 + ix2, are investigated. The quasi-exact
solutions thus obtained reveal a lot about the nature of the complex eigenvalue
spectrum of the potential concerned. The examples of harmonic, harmonic plus
inverse harmonic and Mörse potentials are discussed.

PACS numbers: 03.65.-w, 03.65.Ca, 03.65.Ge

From the point of view of having a better theoretical understanding of several newly
discovered [1,2] phenomena in different branches of science, the study of complex Hamiltonian
systems in one space dimension has become of considerable interest [2–11] in recent years.
In this context both classical and quantum aspects of the system have been investigated. The
fact that a non-Hermitian (particularly the PJ -symmetric one) Hamiltonian H(x, p) can also
provide real eigenvalues in a certain parametric domain of the system has been the basis of a
number [3–6] of recent studies of the quantum mechanics of complex Hamiltonians. At the
classical level, on the other hand, while the construction of exact invariants of such systems
has been carried out [9] using a more general transformation [10] for the canonical variables
x and p, namely

x = x1 + ip2 p = p1 + ix2 (1)

the analyticity property of the Hamiltonian

H(x, p) = H1(x1, p1, x2, p2) + iH2(x1, p1, x2, p2) (2)

has further yielded [11] a class of integrable systems in the associated two space dimensions
characterized by the phase space variables (x1, p1) and (x2, p2).

As a matter of fact, the PJ symmetry of the non-Hermitian Hamiltonian H(x, p)

appears to be a special case of the general transformation (1) (in the sense that under
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PJ symmetry this transformation reduces to a restriction on the variables x1, p1, x2, p2, such
that (x1, p1, x2, p2) → (−x1, p1,−x2, p2, i → −i). In the present letter we make use of the
transformation (1) to study the quantum aspects of a system. In particular, we shall look for
the so-called quasi-exact solution of the Schrödinger-like equation

Ĥ (x, p)ψ(x) = Eψ(x) (3)

where (h̄ = m = 1)

Ĥ (x, p) = −1

2

d2

dx2
+ V (x). (4)

As equation (3) departs from the conventional conceptual and mathematical setting of the
standard [12] Schrödinger equation, we regard this equation as the analogous Schrödinger
equation (ASE) for the non-Hermitian operator Ĥ (x, p). Further, we do not consider (mainly
for the sake of convenience) the dependence of ψ on the real time variable t and look here
only for the stationary state solutions of equation (3). Note that, in the quantum case, the
analyticity property of Ĥ (x, p)—an operator function of two complex variables— translates
into the analyticity of the potential function V (x). Even this latter property is not needed
unless the formalism itself involves the derivatives of the potential function V (x). However,
the analyticity property of ψ(x) will be used in the following work.

Before proceeding further, note from (1) that
d

dx
= ∂

∂x1
− i

∂

∂p2

d

dp
= ∂

∂p1
− i

∂

∂x2
. (5)

The important postulate of conventional quantum mechanics, namely p → −ih̄ d
dx , now takes

the form (p1 + ix2) → −i
(
∂
∂x1

− i ∂
∂p2

)
, which implies p1 → − ∂

∂x2
, x2 → − ∂

∂x1
. Next we write

the complex quantities V (x), ψ(x) and E in the form

V (x) = Vr(x1, p2) + iVi(x1, p2) ψ(x) = ψr(x1, p2) + iψi(x1, p2) E = Er + iEi

where the subscripts r and i, respectively, denote the real and imaginary parts of the
corresponding quantity. Additional subscripts to these quantities separated by a comma will,
however, denote the partial derivatives of the quantity concerned. Thus, using (5) in (4) the
ASE (3), when separated into real and imaginary parts, gives rise to a pair of coupled partial
differential equations

− 1
2 (ψr,x1x1 − ψr,p2p2 + 2ψi,x1p2) + Vrψr − Viψi = Erψr − Eiψi (6a)

− 1
2 (ψi,x1x1 − ψi,p2p2 − 2ψr,x1p2) + Viψr + Vrψi = Erψi + Eiψr . (6b)

The use of the analyticity property of ψ(x) in terms of the Cauchy–Riemann conditions,
namely

ψr,x1 = ψi,p2 ψr,p2 = −ψi,x1 (7)

will reduce equations (6a) and (6b) to somewhat simpler forms as

−2ψr,x1x1 + Vrψr − Viψi = Erψr − Eiψi (8a)

−2ψi,x1x1 + Viψr + Vrψi = Erψi + Eiψr . (8b)

In order to draw some meaningful conclusions about the real and imaginary parts of the
eigenvalue E for a given potential V (x) we solve equations (8a) and (8b) for Er and Ei and
obtain

Er = − 2

ψ2
r + ψ2

i

(ψrψi,x1x1 − ψiψr,x1x1) + Vr (9a)

Ei = − 2

ψ2
r + ψ2

i

(ψrψr,x1x1 + ψiψi,x1x1) + Vi. (9b)
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For the solution of (8) (or, for that matter, of (9)) we make an ansatz for ψ(x) as

ψ(x1, p1) ≡ ψr + iψi = exp (g(x))

= exp [gr(x) + igi(x)] (10)

implying

ψr(x1, p2) = egr (x1,p2) cos gi(x1, p2)

ψi(x1, p2) = egr (x1,p2) sin gi(x1, p2).
(11)

Using these forms for ψr and ψi equations (9a) and (9b) can be expressed as

gr,x1x1 − (gi,x1)
2 + (gr,x1)

2 + 1
2 (Er − Vr) = 0 (12a)

gi,x1x1 + 2gi,x1gr,x1 + 1
2 (Ei − Vi) = 0. (12b)

For a given complex potential V (x) and the ansatz for gr and gi equations (12a) and (12b) can
be rationalized to give Ei and Er . Note that the ansatz for gr(x1, p2) and gi(x1, p2) should
also conform to the analyticity property, namely

gr,x1 = gi,p2 gi,x1 = −gr,p2 . (13)

In what follows we apply the above results to obtain the solution of the ASE (3) for some
typical one-dimensional potentials.

Case I. First, we consider the simplest example of a complex oscillator described by

V (x) = ax2 (a, real) (14)

or, after using (1), we have

Vr(x1, p2) = a(x2
1 − p2

2) Vi(x1, p2) = 2ax1p2.

An ansatz for gr and gi , which conform to (13), is

gr(x1, p2) = 1
2α(x

2
1 − p2

2) + βx1p2

gi(x1, p2) = 1
2β(−x2

1 + p2
2) + αx1p2 (15)

where α and β are real. Use of (15) in (12a) yields the expression

α − (−βx1 + αp2)
2 + (αx1 + βp2)

2 + 1
2Er − 1

2a(x
2
1 − p2

2) = 0

which can be rationalized to give the following set of relations among the arbitrary constants
α and β:

Er = −2α (16a)

βα = 0 (16b)

−β2 + α2 − 1
2a = 0. (16c)

Equation (16b) suggests that either α = 0 or β = 0. If α = 0, then equation (16c) yields the
imaginary value of β, which is in contrast with the ansatz (15). On the other hand, if β = 0,
then α = ±√ a

2 and equation (16a) leads to

Er = +
√

2a (17)

for the negative sign in α.
Similarly, if we use the ansatz (15) in (12b) and rationalize the resultant expression then

one obtains

Ei = 2β (18a)

−2β2 + 2α2 − a = 0 (18b)

αβ = 0. (18c)
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Note that the consistent values of α and β obtained from (18b) and (18c) are the same as those
obtained from (16b) and (16c), leading to

Ei = 0. (19)

Corresponding to these values of arbitrary constants α and β the eigenfunction ψ(x1, p2)

from (10) and (15) now becomes

ψ(x1, p2) = exp

[
−1

2

√
a

2
(x2

1 − p2
2 + 2ix1p2)

]
. (20)

Case II. Next we look for the solution of (3) for the complex harmonic plus inverse harmonic
potential of the form

V (x) = a2x
2 +

a1

x2
(a2, a1, real) (21)

or, after using (1), we have

Vr(x1, p2) = a2(x
2
1 − p2

2) +
a1(x

2
1 − p2

2)

(x2
1 + p2

2)
2

Vi(x1, p2) = 2a2x1p2 − 2ax1p2

(x2
1 + p2

2)
2
.

(22)

With regard to the ansatz for gr and gi in this case, while we seek guidance from our
earlier work [13], the forms consistent with equation (13) can be chosen as

gr(x1, p2) = 1
2α(x

2
1 − p2

2) + βx1p2 + β1 ln(x2
1 + p2

2) (23a)

gi(x1, p2) = 1
2β(−x2

1 + p2
2) + αx1p2 + 2β1 tan−1(p2/x1) (23b)

where α and β are real. As before in case I, the rationalization of equations (12a) and (12b)
for these forms of gr and gi and for the potential (22) leads [14] to the following acceptable
values of α, β and β1 in (23):

α = ±(a2/2)
1/2 β = 0 β1 = 1

4 [1 ± (1 + 2a1)
1/2]. (24)

The corresponding eigenvalue and eigenfunction are given by

Er = −
√

2a2 [2 ± (1 + 2a1)
1/2] Ei = 0 (24′)

ψ(x1, p2) = (x2
1 + p2

2)
β1 e±(1/2)√a2/2{x2

1 −p2
2+2ix1p2}e2iβ1 tan−1(p2/x1)

= (x2
1 + p2

2)
β1 exp

[± 1
2 (a2/2)

1/2(x1 + ip2)
2 + 2iβ1 tan−1(p2/x1)

]
(25)

where β1 is given in (24). Note that in the study of the quantum mechanics of potential (21)
the parameter a1 is found [15] to take only some discrete values, namely a1 = 1

2m(m − 1),
where m is a positive integer, for the existence of a normalizable solution. Here, however, the
normalization ofψ(x1, p2) involves integration over the complex x plane and hence will make
the situation different.

Case III. Lastly, we consider the case of a one-dimensional complex Mörse potential of the
form

V (x) = V0(e
−2ax − 2e−ax) (V0, a, real) (26)

or, after using (1), one obtains

Vr(x1, p2) = V0[e−2ax1 cos 2ap2 − 2e−ax1 cos ap2] (27a)

Vi(x1, p2) = V0[e−2ax1 sin 2ap2 + 2e−ax1 sin ap2]. (27b)
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In fact, such a one-dimensional Mörse potential (for real x) has been studied in the past [16] in
the context of linear lattices. Its three-dimensional version (in terms of the radial coordinate
alone which is tantamount to the study in one dimension) has been investigated recently [17]
in the context of the so-called PJ -symmetric quantum mechanics. In the latter case, however,
a correspondence between a Mörse potential and the harmonic plus inverse harmonic potential
of the type (21) is demonstrated with regard to the solution of the Schrödinger equation for
these potentials. While we postpone such details to a future publication [14], we give here
only the results for the potential (26) in the present framework.

In view of condition (13), an acceptable ansatz for gr and gi in this case turns out to be

gr(x1, p2) = β1x1 + β2e−αx1 cosαp2 gi(x1, p2) = β1p2 − β2e−αx1 sin αp2. (28)

Further, the use of (28) and (27a) in (12a) yields the expression

α2β2e−αx1 cosαp2 + α2β2
2 e−2αx1 cos 2αp2 + β2

1 − 2αβ1β2e−αx1 cosαp2

+ 1
2Er − 1

2V0[e−2ax1 cos 2ap2 − 2e−ax1 cos ap2] = 0. (29)

The rationalization of (29) suggests a natural choice for α as α = a, and other relations as

Er = −2β2
1 (30a)

a2β2
2 − 1

2V0 = 0 (30b)

a2β2 − 2aβ1β2 + V0 = 0. (30c)

The unknown constants β1 and β2 in (28) can readily be obtained from (30b) and (30c) as

β2 = ±
√
V0

2a2
β1 = a

2
±
√
V0

2
and hence Er from (30a) as

Er = −(a/
√

2 −
√
V0)

2 (31a)

for the negative sign in β2. Note that, while the rationalization of equation (12b) gives rise to
the same set of values of α, β2 and β1 as above, it, however, yields

Ei = 0. (31b)

The eigenfunction ψ(x1, p2), in this case, turns out to be

ψ(x1, p2) ≡ ψ(x) = exp

[(
a

2
−
√
V0

2

)
x −

√
V0

2a2
e−αx

]

which has the same mathematical structure as obtained [13] for the real x in (26).
Note that, while in all three cases discussed above the imaginary part of the eigenvalue,

Ei , turns out to be zero, the real part Er and the eigenfunction ψ(x1, p2) are found to have
the same mathematical structure as [13] for the case of real x. The complex extension of
the variables through equation (1) for these cases seems trivial. But that is not true. The
prescription proposed here for the solution of ASE (3) is quite general. No doubt it is applied
here only to a few cases (cf cases I, II and III) when the potential V (x) depends on x alone
and involves only the real parameters but it is expected to work for a variety of potentials.
In fact, one can apply the method to the cases when the potential V is a function of both x
and x∗ and also involves the complex parameters. In that case one opens a Pandora’s box
as far as the varieties of solvable cases of complex potentials and the associated eigenvalue
spectra are concerned. For example, for the simplest choice of harmonic oscillator of case I
other variants of V (x, x∗) turn out to be (i) ax∗2, (ii) axx∗, (iii) ax∗x + bx2, (iv) ax∗x + bx∗2,
(v) ax∗2 +bx2 and (vi) ax∗2 +bx2 +cx∗x, where the parameters a, b, c, in general, are complex.
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Moreover, all these cases can be handled using the same ansatz (15). Similarly, the variants
for the potentials of cases II and III, in general for the complex parameters a2, a1, V0 and a, are
(i) a2x

∗2 +a1/x
∗2, (ii) a2xx

∗+a1/x
∗2, (iii) a2x

∗2 +a1/xx
∗, (iv) a2xx

∗+a1/x
2, (v) a2x

2 +a1/xx
∗,

(vi) a2x
∗2 + a1/x

2, (vii) a2x
2 + a1/x

∗2, (viii) a2xx
∗ + a1/xx

∗, (ix) several other three-term
constructions like a3x

2 + a2xx
∗ + a1/x

2, etc, and (i) V0(e−2ax − 2eax
∗
), (ii) V0(e−2ax∗ − 2eax)

(iii) V0(e−2ax∗ −2eax
∗
), respectively. Note that the latter two categories of potentials can again

be handled using the ansatze (23) and (28), respectively.
It may be mentioned that the nature of the eigenfunction and the associated complex

eigenvalue spectrum for these potentials in general turns out to be very sensitive not only with
reference to the variant of a particular class of V (x, x∗) but also with respect to the nature of
the underlying parameters. Just to give some glimpses of such features, we highlight the first
variant of case I, namely when (a) V (x, x∗) = ax∗2 (a, real) and (b) V (x) = ax2 (a = ar +iai ,
complex). For the former case ASE (3) does not admit the solutions in the form (15) whereas
for the latter the eigenvalues and eigenfunction are found [14] as

Er = +(ar + |a|)1/2 Ei = +(−ar + |a|)1/2

ψ(x1, p2) = exp

[
±1

4

(a + |a|)
(ar + |a|)1/2 (x1 + ip2)

2

]
.

Thus, one can visualize the sensitive dependence of the nature of eigenvalues and eigenfunc-
tions on the type of complexity dealt with in V (x, x∗), namely parametric and/or coordinate
type. PJ -symmetric potentials, studied extensively in recent years [3–8], deal mainly with the
coordinate-type complexity and that too in a restricted domain of the complex phase space.

To summarize, we mention that a simple prescription for the solution of the ASE (3)
for complex potentials is proposed in this letter. While further applications of the method
are in progress, it is found to work well for a variety of complex potentials (namely
polynomial, singular and exponential potentials) as far as the quasi-exact ground state solution
of equation (3) is concerned.

The author wishes to thank Dr D Parashar for a critical reading of the manuscript. Many useful
discussions with Professor H J Korsch of the University of Kaiserslautern during the author’s
visit to that university are gratefully acknowledged.
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